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Abstract— This paper outlines the application of a dynamic 

programming approach to address the profit optimization 

problem in stock trading with a maximum of k-transactions. The 

primary objective is to determine a buy and sell strategy that 

yields maximum profit based on historical stock price data. The 

proposed methodology utilizes daily stock price time series data, 

specifically Open, High, Low, Close, and Volume (OHLCV) data, 

obtained through the Alpha Vantage Application Programming 

Interface (API). The dynamic programming formulation is 

carefully developed by defining appropriate states, recurrence 

relations, and base cases tailored to the problem's characteristics. 

The algorithm's implementation is tested on actual stock data to 

demonstrate its effectiveness in calculating optimal potential 

profits under various transaction count constraints. The research 

findings indicate that the dynamic programming approach can 

systematically find the sequence of transactions that maximizes 

profit and analyze how the transaction limit affects the achievable 

potential profit. 
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I.  INTRODUCTION 

Navigating the complex and volatile stock market to 
maximize financial gains presents significant challenges, 
increasingly addressed by data-driven algorithmic trading 
strategies. A classic problem within this domain is optimizing 
trading profits under operational constraints, specifically 
determining the "Best Time to Buy and Sell Stock with at most 
K Transactions." This paper tackles this challenge by analyzing 
historical daily Open, High, Low, Close, and Volume (OHLCV) 
data, sourced from the Alpha Vantage API, to identify the most 
profitable sequence of trades given a predefined k-transaction 
limit. The objective is to develop a systematic approach for 
maximizing returns when the number of allowable buy-and-sell 
operations is restricted. 

This research employs Dynamic Programming (DP), a 
powerful algorithmic technique, to systematically solve this 
constrained optimization problem. The primary contributions of 
this work include demonstrating the practical application of DP 
for k-transaction profit maximization using real-world market 
data. Furthermore, the paper provides a clear and detailed 
exposition of the dynamic programming formulation 
specifically tailored to this trading scenario encompassing state 
definitions, recurrence relations, and base cases. Finally, it offers 

an analysis of how varying the transaction limit k influences 
achievable profits, thereby providing insights into the trade-offs 
between transaction frequency and overall profitability. 

II. THEORITICAL BACKGROUND 

A. Principles of Dynamic Programming 

Dynamic Programming (DP) is a powerful algorithmic 
technique used for solving complex problems by breaking them 
down into a collection of simpler, overlapping subproblems. The 
solutions to these subproblems are computed once and stored, 
typically in a table, to avoid redundant calculations, leading to 
significant efficiency gains, especially for problems where 
subproblems are encountered multiple times. DP is particularly 
well-suited for optimization problems that exhibit two key 
characteristics: optimal substructure and overlapping 
subproblems.    

Optimal substructure means that an optimal solution to the 
overall problem can be constructed from optimal solutions to its 
subproblems. If a problem can be broken down such that an 
optimal solution to a larger problem contains within it optimal 
solutions to smaller instances of the same problem, then this 
property holds. Overlapping subproblems refers to the 
characteristic where the same subproblems are revisited multiple 
times during the recursive solution of the main problem. DP 
exploits this by solving each subproblem just once and storing 
its solution.    

The Principle of Optimality is fundamental to DP. It states 
that in an optimal sequence of decisions or choices, each sub-
sequence must also be optimal with respect to the state resulting 
from the earlier decisions. This principle allows DP algorithms 
to build up a solution by extending previously found optimal 
solutions for subproblems. For instance, if the path from point A 
to point C is an optimal path, and point B lies on this path, then 
the segment from A to B must also be an optimal path from A to 
B. DP problems are typically solved using one of two 
approaches: 

1. Top-Down with Memoization: The problem is broken 
down recursively. If a subproblem is encountered, its 
solution is computed and stored (memoized). If the 
same subproblem is encountered again, the stored 
solution is retrieved instead of recomputing.    
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2. Bottom-Up with Tabulation: Subproblems are solved in 
order of increasing size. Solutions to smaller 
subproblems are used to compute solutions to larger 
ones, typically by filling a table. This is the approach 
generally favored for its efficiency in avoiding recursion 
overhead.   

B. Stock Trading Problem with K-Transactions 

The problem of maximizing profit from stock trading with at 
most k transactions is a classic application of dynamic 
programming. Given a sequence of stock prices over n days, the 
goal is to execute at most k buy-sell transaction pairs to achieve 
the highest possible profit. Several DP formulations can address 
this. A common, though potentially more space-intensive, 
approach involves a 2D DP table, 𝑑𝑝[𝑖][𝑗], representing the 
maximum profit achievable using at most i transactions up to 
day j. The recurrence for this typically involves considering 
whether to make a transaction on day j or not, and if so, finding 
the optimal previous buy point. The time complexity for such an 
approach is often 𝑂(𝑘 ⋅ 𝑛2) or 𝑂(𝑘 ⋅ 𝑛) depending on the 
specific recurrence, with space complexity of 𝑂(𝑘 ⋅ 𝑛).  

A more space-efficient approach, and the one adopted in this 
paper, utilizes a 1D DP array, often denoted as 𝑑𝑝[2𝑘 + 1] or 
similar. This array tracks the profit at different states of 
transactions. Typically, odd indices in this array (e.g., 𝑑𝑝[2𝑡 −
1]) represent the maximum profit after the 𝑡 − 𝑡ℎ buy 
(effectively, the negative of the cash spent, or the state of holding 
a stock after 𝑡 buys and 𝑡 − 1 sells), and even indices (e.g., 
𝑑𝑝[2𝑡]) represent the maximum profit after the t-th sell (i.e., 
realized profit after 𝑡 complete transactions). The iteration 
proceeds through each day's price. For each price, the DP table 
is updated: 

For the 𝑡 − 𝑡ℎ buy (state 2𝑡 − 1): 

𝑑𝑝[2𝑡 − 1] = 𝑚𝑎𝑥(𝑑𝑝[2𝑡 − 1]𝑜𝑙𝑑, 𝑑𝑝[2𝑡 − 2]𝑜𝑙𝑑 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑟𝑖𝑐𝑒) (1) 

This means the best state after buying is either not buying 
today (keeping the previous best buying state) or buying today 
(which means we must have been in the state of having 
completed 𝑡 − 1 sells, 𝑑𝑝[2𝑡 − 2], and then we spend the 
current_price). 

For the 𝑡 − 𝑡ℎ sell (state 2𝑡): 

𝑑𝑝[2𝑡] = 𝑚𝑎𝑥(𝑑𝑝[2𝑡]𝑜𝑙𝑑, 𝑑𝑝[2𝑡 − 1]𝑜𝑙𝑑 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑟𝑖𝑐𝑒) (2) 

This means the best state after selling is either not selling 
today or selling today (which means we must have been in the 
state of having made the 𝑡 − 𝑡ℎ buy, 𝑑𝑝[2𝑡 − 1], and then we 
gain the current_price). 

The base state 𝑑𝑝 is initialized to 0 (zero profit with zero 
transactions). Other buy states are initialized to negative infinity, 
and sell states (for t > 0) can also be initialized to negative 
infinity to ensure they are correctly updated by valid 
transactions.4 This 1D DP approach typically has a time 
complexity of 𝑂(𝑛 ⋅ 𝑘) and a space complexity of 𝑂(𝑘). 

A special condition arises if 2𝑘 ≥ 𝑛. In this scenario, the 
constraint on the number of transactions is loose enough that one 
can effectively perform unlimited transactions. The problem 
then simplifies to summing all positive differences between 

consecutive day prices (𝑝𝑟𝑖𝑐𝑒[𝑖] − 𝑝𝑟𝑖𝑐𝑒[𝑖 − 1] if positive), as 
this strategy captures all available profits. 

C. Alpha Vantage API for Financial Data 

Alpha Vantage is a prominent provider of financial market 

data, offering access through a comprehensive suite of 

Application Programming Interfaces (APIs). It serves a wide 

range of users, from individual investors and students to 

professional developers and financial institutions, by providing 

both real-time and historical data across various asset classes 

including stocks, ETFs, forex, and cryptocurrencies. For this 

research, the primary data utilized is the daily historical stock 

price time series, specifically OHLCV data. OHLCV stands for 

Open, High, Low, Close, and Volume, which are five key data 

points summarizing the trading activity for a stock within a 

specified interval.  

- Open: The price at which the stock first traded upon the 

opening of the market. 

- High: The highest price at which the stock traded 

during the day. 

- Low: The lowest price at which the stock traded during 

the day. 

- Close: The final price at which the stock traded when 

the market closed. 

- Volume: The total number of shares traded during the 

day. 

The specific Alpha Vantage API function used is 

TIME_SERIES_DAILY_ADJUSTED. This endpoint is crucial 

because it provides daily prices that are adjusted for corporate 

actions such as dividend payments and stock splits. Using 

adjusted prices is essential for accurate historical profit 

calculations, as these adjustments reflect the true historical 

value and performance of an investment, preventing distortions 

that raw prices might introduce. Data can be retrieved in 

formats like JSON or CSV, facilitating easy integration into 

analytical workflows. 

Alpha Vantage offers a free API key that allows for a 

limited number of API calls (e.g., up to 500 calls per day or 25 

requests per day as per initial project description, though 11 

mentions 500/day for the free tier). For more intensive data 

needs, premium plans are available. While Alpha Vantage does 

not provide explicit, universally mandated citation formats in 

their main documentation, users are generally expected to 

acknowledge Alpha Vantage Inc. as the data source. For 

specific academic citation guidelines, direct contact with their 

support might be necessary. 

III. METHODOLOGY 

A. Data Acquisition from Alpha Vantage API 

The initial step in this research involves programmatically 
acquiring historical stock price data using the Alpha Vantage 
API. This is achieved by sending HTTP GET requests to the 
https://www.alphavantage.co/query endpoint. Key parameters 
for these requests include 
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function=TIME_SERIES_DAILY_ADJUSTED to retrieve 
daily adjusted prices, symbol for the specific stock ticker (e.g., 
IBM), outputsize=full to obtain the complete historical data 
series rather than just the last 100 data points, datatype=json for 
a structured response, and a unique apikey for authentication.7 
The JSON response is then parsed to extract the necessary 
OHLCV data, particularly the 'adjusted close' prices. Error 
handling is implemented to manage potential issues like network 
failures or API rate limit exhaustion. 

B. Data Preprocessing 

Once the raw data is acquired, it undergoes a preprocessing 
stage. This primarily involves extracting the 'adjusted close' 
prices from the parsed JSON response and structuring them into 
a chronological array or list. This sequence of adjusted closing 
prices forms the direct input for the dynamic programming 
algorithm. Ensuring the data is clean, complete (or that missing 
values are handled appropriately, though assumed complete for 
this study from a reliable source like Alpha Vantage), and 
correctly ordered by date is critical for the algorithm's accuracy. 

C. Dynamic Programming Formulation for K-Transaction 

Profit Optimization 

 The core of the methodology is the dynamic programming 
formulation tailored to maximize profit with at most k 
transactions. This research employs an efficient one-
dimensional DP approach. A DP array, dp, of size 2𝑘 + 1 is 
utilized. dp is initialized to 0, representing zero profit with no 
transactions. For j from 1 to 2k, 𝑑𝑝[𝑗] is typically initialized to 
negative infinity. Odd indices 𝑑𝑝[𝑗] (where 𝑗 = 2𝑡 − 1) store 
the maximum "value" after the 𝑡 − 𝑡ℎ buy (e.g., 𝑑𝑝[2𝑡 − 2] −
𝑝𝑟𝑖𝑐𝑒), effectively representing the state of holding a stock. 
Even indices 𝑑𝑝[𝑗] (where 𝑗 = 2𝑡) store the maximum profit 
after the t-th sell (e.g., 𝑑𝑝[2𝑡 − 1] + 𝑝𝑟𝑖𝑐𝑒). The recurrence 
relations used to update the dp table for each priceday are: 

For the 𝑡 − 𝑡ℎ buy (index 𝑗 = 2𝑡 − 1): 

𝑑𝑝[𝑗] = 𝑚𝑎𝑥(𝑑𝑝[𝑗]𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑑𝑝[𝑗 − 1] − 𝑝𝑟𝑖𝑐𝑒𝑑𝑎𝑦) (3) 

For the 𝑡 − 𝑡ℎ sell (index 𝑗 = 2𝑡): 

𝑑𝑝[𝑗] = 𝑚𝑎𝑥(𝑑𝑝[𝑗]𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑑𝑝[𝑗 − 1] + 𝑝𝑟𝑖𝑐𝑒𝑑𝑎𝑦) (4) 

 Here, 𝑑𝑝[𝑗 − 1] refers to the value from the same price 
iteration, representing the state before the current buy/sell 
action. The final maximum profit for at most k transactions is 
found in 𝑑𝑝[2𝑘]. 

D. Core Algorithm Implementation and Exploratory Machine 

Learning Integration 

Additionally, it outlines an exploratory framework for 

integrating simple Machine Learning models, which could 

serve as potential enhancements, input signal generators, or 

comparative benchmarks for the primary DP strategy. Dynamic 

Programming Algorithm Execution The algorithmic 

implementation of the DP strategy begins by initializing the dp 

array of size 2𝑘 + 1, with 𝑑𝑝[0] = 0 and all other elements set 

to negative infinity to ensure that any valid transaction sequence 

will yield a higher value than these initial states. A special case 

is checked first: if 2𝑘 (representing k buy and k sell operations) 

is greater than or equal to the number of price days N, the 

problem simplifies. In this scenario, the maximum profit is 

obtained by summing all positive differences between 

consecutive prices (prices[i] − prices[i−1] if this difference is 

positive), as this allows capturing all upward price movements 

when transaction limits are not restrictive. 

 If this special case does not apply, the main algorithm 

iterates through each historical stock price. Within this loop, 

another loop iterates from 𝑗 = 1 to 2k to update the dp table 

entries according to the recurrence relations previously defined 

(equations 3 and 4). For an odd j (a buy state), 𝑑𝑝[𝑗] is updated 

by considering either not transacting further with this j-th buy 

state or by performing the j-th buy using the profit from the (𝑗 −
1) th state (a sell state) minus the current price. For an even j (a 

sell state), 𝑑𝑝[𝑗] is updated by considering either not transacting 

further with this j-th sell state or by performing the j-th sell 

using the value from the (𝑗 − 1) th state (a buy state) plus the 

current price. After processing all prices, the value in 𝑑𝑝[2𝑘] 
holds the maximum profit achievable with at most k 

transactions. If this value is negative, it implies no profitable 

trades were possible, and the optimal profit is considered 0 (by 

not trading). The time complexity of this DP algorithm is 𝑂(𝑁 ⋅
𝐾), and its space complexity is 𝑂(𝐾). 

Exploratory Machine Learning Integration To explore 

potential synergies and provide comparative insights, two types 

of simple ML models are considered: a time series forecasting 

model (ARIMA) and a classification model (e.g., Support 

Vector Machine - SVM). It's important to note that the primary 

focus of this paper remains the DP strategy, with ML 

integration serving as an exploratory component. 

IV. RESULTS AND ANALYSIS 

A. Sensitivity Analysis of Model Performance to Transaction 

Constraints 

The analysis focuses on maximum profit (Max Profit), 

actual trades executed (Trading Frequency), and percentage 

total return (Total Return), as 'K' varies from 2.5 to 20. The goal 

is to understand how transaction volume constraints influence 

these metrics. 

 
Fig. 1. AAPL Strategy Comparison 

Fig. 1 (AAPL) shows Max Profit increasing from 

approximately 3.5 to over 8 units and Total Return from 1.5% 

to nearly 7% as K rises to 20. Trading Frequency linearly 

matches K, indicating full utilization of allowed trades. Both 

Max Profit and Total Return curves show diminishing returns 

at higher K values. 
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Fig. 2. AMZN Strategy Comparison 

Fig. 2 (AMZN) indicates Max Profit growing from 1.5 to 

about 4.4 units. Trading Frequency equals K. Notably, Total 

Return is substantial, increasing from roughly 2% to over 50%, 

with a convex curve suggesting accelerating returns at higher 

K. 

 
Fig. 3. GOOGL Strategy Comparison 

Fig. 3 (GOOGL) presents Max Profit rising from 1.8 to 

nearly 4.0 units, with Trading Frequency equaling K. The Max 

Profit curve is concave. Total Return grows from around 8% to 

almost 50%, showing a convex shape similar to AMZN, 

implying increasing percentage gains with more trades. 

 
Fig. 4. JNJ Strategy Comparison 

Fig. 4 (JNJ) shows Max Profit increasing from 0.7 to about 

2.3 units, and Trading Frequency equals K. This instrument has 

the lowest Max Profit and a modest Total Return (2% to 17%). 

Both curves suggest diminishing rates of increase, indicating 

less responsiveness to higher K compared to other stocks. 

 
Fig. 5. JPM Strategy Comparison 

Fig. 5 (JPM) demonstrates Max Profit increasing from 1.7 

to around 3.8 units, with Trading Frequency equaling K. JPM 

shows a robust Total Return, growing from about 7% to over 

35%, with a somewhat convex curve, especially at higher K 

values, suggesting the strategy's effectiveness beyond tech 

stocks. 

 
Fig. 6. META Strategy Comparison 

Fig. 6 (META) reveals Max Profit increasing from 3.5 to 

around 7.3 units, and Trading Frequency equals K. META 

exhibits strong performance in both Max Profit and Total 

Return (5% to over 45%). Its Total Return curve is distinctly 

convex, indicating accelerating percentage returns as K 

increases. 

 
Fig. 7. MSFT Strategy Comparison 

Fig. 7 (MSFT) details Max Profit rising from 2.8 to around 

6.4 units, with Trading Frequency equaling K. Total Return 

increases from about 2% to nearly 15%. Unlike some other tech 

stocks, MSFT's Total Return curve is more linear or slightly 

concave, suggesting non-accelerating percentage benefits from 

increasing K. 

 
Fig. 8. NFLX Strategy Comparison 

Fig. 8 (NFLX) shows Max Profit increasing from 3.5 to 

around 7.3 units, with Trading Frequency equaling K. Total 

Return grows from about 4% to over 35%. The Total Return 

curve is generally convex, particularly for K > 7.5, suggesting 

the strategy effectively captures volatility with more trades. 

 
Fig. 9. NVDA Strategy Comparison 
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Fig. 9 (NVDA) presents a significant Max Profit increase 

from 7 to over 13 units, and Trading Frequency equals K. 

NVDA stands out with high absolute Max Profit and an 

exceptional Total Return (8% to over 60%). The Total Return 

curve is markedly convex, indicating strong scalability with K. 

 
Fig. 10. TSLA Strategy Comparison 

Fig. 10 (TSLA) shows striking results. Max Profit 

skyrockets from 16 to over 45 units (note the larger Y-axis 

scale), and Trading Frequency equals K. Total Return shows a 

massive increase from about 8% to nearly 100%. TSLA is the 

clear performance leader, with sharply convex Max Profit and 

Total Return curves, indicating hyper-responsiveness to 

increases in K. 

In summary, a universal observation is the linear 

relationship between K and actual trades executed, indicating 

full utilization of transaction capacity. Increasing K generally 

leads to higher profits and returns, but with varying efficiencies. 

Most stocks show diminishing marginal profits (concave Max 

Profit curves). However, Total Return curves vary: AMZN, 

GOOGL, META, NFLX, NVDA, and especially TSLA, exhibit 

convex curves (accelerating percentage returns), while AAPL, 

[N], and MSFT show more modest or diminishing gains. 

Performance heterogeneity is significant, with TSLA and 

NVDA showing exceptional responsiveness to K, while [N] and 

MSFT are more muted. These findings highlight K's critical 

role and suggest asset-specific optimal K settings. The 

consistent use of all allowed trades also implies that transaction 

costs, not modeled here, would scale linearly with K and are a 

crucial practical consideration. 

B. Comparative Performance Analysis DP Strategy vs. 

Baseline Models 

To contextualize the performance of the Dynamic 

Programming (DP) model, a comparative analysis was 

conducted against three widely recognized baseline trading 

strategies: Buy & Hold, Moving Average (MA) Crossover, and 

Momentum. For this comparison, the DP strategy with a 

transaction limit of K=10 (DP-K10) was selected as the 

representative advanced model, as it consistently demonstrated 

a strong balance of high returns and transaction volume in the 

sensitivity analysis. The evaluation was performed across the 

same set of stocks, using key performance indicators such as 

Total Return, Sharpe Ratio, and Maximum Drawdown to 

provide a multi-dimensional view of performance. 

The results, as summarized in the detailed reports, 

overwhelmingly demonstrate the superior performance of the 

DP-K10 strategy. In nearly all cases, the DP-K10 model 

achieved the highest total returns and Sharpe ratios, indicating 

not only greater profitability but also better risk-adjusted 

returns. A visual summary of this comparison is presented in 

the composite figure below, which breaks down performance 

across several dimensions. 

 
Fig. 11. Comprehensive Strategy Comparison 

The top-left bar chart provides a direct comparison of total 

percentage return between the optimized DP strategy and a 

passive Buy & Hold approach. For highly volatile stocks such 

as TSLA and NVDA, the DP strategy’s outperformance is 

particularly stark. It effectively capitalizes on multiple price 

swings, turning volatility into profitable opportunities, whereas 

a Buy & Hold approach would have yielded significantly lower 

or even negative returns over the same period. For instance, the 

DP strategy on TSLA delivered a return nearing 100%, while 

Buy & Hold was substantially lower. This plot empirically 

validates the core advantage of the k-transaction model: its 

ability to systematically extract value from price fluctuations 

that a passive strategy cannot. 

The top-right plot serves as a representative example for 

AAPL of the findings from the preceding sensitivity analysis. 

The blue line illustrates that maximum potential profit 

consistently rises with an increase in the allowable number of 

transactions (K). However, the curve's concavity suggests 

diminishing marginal returns; each additional transaction 

contributes progressively less profit than the one before it. 

Concurrently, the red line shows that the number of actual 

trades executed by the algorithm increases linearly with K, 

indicating that the model fully utilizes the transaction capacity 

provided. This confirms that the transaction limit is a critical 

and binding constraint on the algorithm's performance. 

The scatter plot on the bottom-left maps the annualized 

volatility (risk) against the total return (reward) for the DP 

strategy across all tested stocks. Each point represents the 

performance of the strategy on a specific stock. This 
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visualization effectively illustrates the risk-reward trade-off 

inherent in different assets when subjected to the same 

optimized trading logic. Stocks positioned towards the top-

right, such as NVDA and TSLA, are identified as high-risk, 

high-reward opportunities under the DP model. Conversely, 

assets in the bottom-left quadrant represent lower-risk, lower-

return profiles. This plot confirms that the DP strategy adapts 

to the unique volatility profile of each stock rather than 

applying a one-size-fits-all approach. 

Finally, the bottom-right plot provides a nuanced insight 

into the relationship between the number of trades and overall 

profitability. The vertical spread of the data points reveals that 

a higher number of trades does not guarantee a higher return. 

For example, several stocks cluster around 20 trades, yet their 

total returns vary significantly from approximately 30% to over 

60%. This underscores a key conclusion: the DP algorithm's 

strength lies not merely in increasing transaction frequency but 

in its ability to identify the optimal timing and quality of trades. 

The profit is driven by the strategic selection of buy-low, sell-

high pairs, a task at which the DP model excels, rather than by 

trading volume alone. 

As an exploratory component, ARIMA time series 

forecasting models were evaluated across the portfolio, 

achieving mixed results with average directional accuracy of 

60% and MAPE of 0.30%. While Netflix (0.09% MAPE) and 

NVIDIA (0.06% MAPE) showed strong forecasting 

performance, three securities (AMZN, GOOGL, TSLA) 

converged to random walk models, indicating limited 

predictable patterns. Despite reasonable forecasting metrics, the 

ARIMA approach significantly underperformed the DP 

optimization strategy, reinforcing the superiority of historical 

optimization over predictive modeling for the k-transaction 

problem. 

C. Risk and Drawdown Analysis 

The comprehensive evaluation of risk characteristics 

through drawdown analysis constitutes a critical component of 

the Dynamic Programming strategy assessment, providing 

essential insights into the algorithm's capital preservation 

capabilities and downside risk management across diverse 

market conditions. The drawdown metric, calculated as the 

percentage decline from a portfolio's peak value to its 

subsequent trough, serves as a fundamental measure of 

maximum loss exposure and represents the worst-case scenario 

an investor would experience during the analysis period. 

The methodological approach for drawdown calculation 

maintains consistency across all analyzed securities by 

computing the running maximum of portfolio values generated 

through the optimal K=20 DP strategy implementation, 

subsequently deriving percentage drawdowns relative to these 

peak values. This standardized methodology ensures statistical 

validity and enables meaningful cross-asset comparisons while 

adhering to established financial risk assessment protocols. 

 
Fig. 12. AAPL Sensitivity Analysis 

Figure 12 presents the drawdown characteristics for Apple 

Inc. (AAPL), revealing a remarkably conservative risk profile 

with maximum drawdown levels constrained to approximately 

0.15% throughout the analysis period. The temporal 

distribution of drawdown events demonstrates concentrated 

activity in late 2024 and early 2025, suggesting that the DP 

algorithm effectively navigated AAPL's generally stable price 

trajectory while maintaining strict risk controls. The minimal 

drawdown exposure during the majority of the analysis period 

validates the strategy's ability to preserve capital while pursuing 

optimization objectives, particularly noteworthy given AAPL's 

position as a large-cap technology stock subject to sector-wide 

volatility episodes. 

 
Fig. 13. AMZN Sensitivity Analysis 

The Amazon (AMZN) risk profile, illustrated in Figure 13, 

exhibits episodic drawdown events primarily concentrated in 

mid-2021 and late 2024, with maximum drawdown levels 

maintained within the 0.15% threshold established across the 

analyzed portfolio. The mid-2021 cluster corresponds to the 

broader technology sector correction, while the 2024 events 

align with macroeconomic uncertainties affecting growth-

oriented technology companies. The strategy's ability to limit 

downside exposure during these volatile periods demonstrates 

effective risk management capabilities, particularly significant 

considering AMZN's inherent volatility and growth stock 

characteristics. 
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Fig. 14. GOOGL Sensitivity Analysis 

Figure 14 displays Google's (GOOGL) drawdown pattern, 

characterized by concentrated risk events in 2022 with 

additional periods in late 2024. The 2022 concentration aligns 

with the significant technology sector decline attributed to 

rising interest rates and valuation concerns affecting growth 

companies. The DP strategy's performance during this 

challenging market environment, maintaining drawdowns 

within established parameters, provides empirical evidence of 

the algorithm's robust risk management framework under 

adverse conditions. 

 
Fig. 15. JNJ Sensitivity Analysis 

Johnson & Johnson (JNJ), presented in Figure 15, 

demonstrates drawdown characteristics reflective of the 

healthcare sector's relative stability compared to technology 

counterparts. The risk events, primarily concentrated in 2022 

and late 2024, maintain consistency with the maximum 

drawdown threshold observed across other analyzed securities. 

This pattern validates the DP strategy's sector-agnostic risk 

management effectiveness while highlighting the algorithm's 

ability to adapt to different volatility environments. 

 
Fig. 16. JPM Sensitivity Analysis 

The JPMorgan Chase (JPM) analysis, shown in Figure 16, 

reveals drawdown periods concentrated in 2024 and early 2025, 

corresponding to concerns regarding interest rate environments 

and regulatory developments affecting the financial sector. The 

strategy's maintenance of risk parameters within established 

thresholds while operating in this complex regulatory 

environment demonstrates adaptability to sector-specific 

dynamics and systematic risk factors. 

 
Fig. 17. META Sensitivity Analysis 

Meta Platforms (META), depicted in Figure 17, exhibits 

concentrated drawdown periods in late 2024 and early 2025, 

reflecting the company's exposure to regulatory uncertainties 

and competitive dynamics within the social media landscape. 

The DP algorithm's ability to maintain maximum drawdown 

within acceptable parameters demonstrates effective adaptation 

to sentiment-driven volatility and sector-specific risk factors. 

 
Fig. 18. MSFT Sensitivity Analysis 

Microsoft Corporation (MSFT), illustrated in Figure 18, 

presents a notably stable risk profile with brief drawdown 

periods concentrated in late 2024. This pattern reflects the 

company's position as a mature technology enterprise with 

diversified revenue streams and stable market positioning. The 

conservative drawdown management validates the algorithm's 

ability to calibrate risk parameters according to underlying asset 

stability characteristics. 
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Fig. 19. NFLX Sensitivity Analysis 

Netflix (NFLX), shown in Figure 19, demonstrates 

significant drawdown activity concentrated in late 2024, 

reflecting the streaming entertainment industry's susceptibility 

to competitive pressures and evolving consumer preferences. 

The strategy's management of these volatility episodes while 

maintaining established risk thresholds indicates effective risk-

adjusted optimization within a dynamic industry environment. 

 
Fig. 20. NVDA Sensitivity Analysis 

NVIDIA Corporation (NVDA), presented in Figure 20, 

exhibits concentrated risk periods in late 2024, consistent with 

the semiconductor industry's cyclical nature and sensitivity to 

technological developments. Given NVDA's position at the 

forefront of artificial intelligence and high-performance 

computing, the drawdown pattern demonstrates the strategy's 

effective navigation of both opportunity and risk in this rapidly 

evolving sector. 

 
Fig. 21. TSLA Sensitivity Analysis 

Tesla Inc. (TSLA), depicted in Figure 21, presents a 

distinctive risk profile with drawdown periods distributed 

across 2022 and late 2024. The electric vehicle manufacturer's 

inherent volatility, driven by production targets, regulatory 

developments, and market sentiment regarding sustainable 

transportation, creates a challenging environment for 

systematic trading strategies. The DP algorithm's ability to 

maintain maximum drawdown consistency with other analyzed 

securities while operating in this high-volatility environment 

demonstrates exceptional risk management capabilities. 

The cross-sectoral analysis reveals several critical insights 

regarding the DP strategy's risk management effectiveness. The 

remarkable consistency of maximum drawdown levels across 

all analyzed assets, regardless of sector classification or 

inherent volatility characteristics, provides compelling 

empirical evidence of the algorithm's robust risk control 

mechanisms. This uniformity suggests that the DP approach 

successfully implements systematic risk management protocols 

that adapt to asset-specific characteristics while maintaining 

consistent downside protection. 

The temporal clustering of drawdown events, particularly 

the concentration in 2022 and late 2024 across multiple assets, 

indicates that the DP strategy appropriately responds to 

systematic market risk factors rather than exhibiting random or 

asset-specific vulnerabilities. This pattern alignment 

demonstrates that the algorithm effectively distinguishes 

between systematic and idiosyncratic risk components, 

implementing position management strategies that account for 

broader market conditions. 

The rapid recovery patterns observed across all analyzed 

securities provide evidence of the DP algorithm's effectiveness 

in identifying optimal exit and re-entry points during adverse 

market conditions. This characteristic proves particularly 

valuable for practical implementation, suggesting that 

drawdown periods represent temporary disruptions rather than 

fundamental strategy failures. The consistent recovery patterns 

validate the algorithm's ability to maintain strategic positioning 

while preserving capital during challenging market 

environments. 

The drawdown analysis, when integrated with the 

previously documented return characteristics, establishes a 

comprehensive framework for evaluating the DP strategy's risk-

adjusted performance. The uniform maximum drawdown levels 

across diverse asset classes, combined with varying return 

profiles, indicate that the algorithm successfully optimizes risk-

return trade-offs on an asset-specific basis while maintaining 

consistent risk management standards. This empirical 

validation supports the theoretical foundation of the DP 

approach and its potential for practical implementation in 

institutional trading environments where consistent risk 

management protocols are essential for operational success. 
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D. Multi-Strategy Performance Evaluation and Comparative 

Analysis 

The systematic evaluation of trading strategy effectiveness 

necessitates rigorous comparative analysis across multiple 

performance dimensions to establish the relative merits of 

different algorithmic approaches. This assessment examines the 

Dynamic Programming strategy against established baseline 

methodologies, including Buy-and-Hold, Moving Average 

Crossover, and Momentum strategies, utilizing standardized 

performance metrics for objective evaluation across diverse 

market conditions. 

 

 

 

 

 

 

 

Fig. 22. Performance Overview 

Figure 22 presents a comprehensive four-panel analysis 

providing critical insights into comparative performance 

characteristics across all evaluated trading strategies. The 

visualization employs standardized metrics to facilitate direct 

comparison while maintaining analytical rigor necessary for 

institutional evaluation frameworks. 

The upper-left panel illustrates average total return 

comparison across strategies, revealing substantial performance 

differentials between the Dynamic Programming approach and 

conventional baseline methodologies. The DP strategy with 

K=10 transaction constraints demonstrates exceptional average 

returns of approximately 17.5% across all analyzed securities, 

representing significant outperformance relative to all 

comparative approaches. This superior performance validates 

the theoretical foundation of optimization-based trading 

methodologies and demonstrates the practical value of 

systematic profit maximization under transaction constraints. 

The Buy-and-Hold strategy generates near-zero average 

returns across the analyzed portfolio, establishing the minimum 

acceptable return threshold. The DP strategies with reduced 

transaction constraints demonstrate positive relationships 

between optimization flexibility and profit generation, with 

K=5 achieving approximately 2.5% returns and K=2 generating 

0.5% returns. The Moving Average Crossover and Momentum 

strategies exhibit minimal positive performance, highlighting 

the limitations of traditional technical analysis approaches. 

The upper-right panel presents average Sharpe ratio 

analysis, providing insights into risk-adjusted performance 

characteristics. The DP K=10 strategy achieves an exceptional 

Sharpe ratio exceeding 4.0, indicating superior risk-adjusted 

returns that significantly outperform all comparative 

approaches. The DP K=5 strategy maintains a robust ratio of 

approximately 2.8, while the K=2 strategy produces 1.5, 

confirming optimization benefits persist under constrained 

environments. The Moving Average Crossover strategy 

exhibits a negative Sharpe ratio of -1.5, indicating inadequate 

risk compensation, while the Momentum strategy demonstrates 

minimal positive performance near zero. 

The lower-left panel provides a comprehensive risk-return 

scatter plot illustrating volatility-return relationships across all 

analyzed securities and strategies. The visualization reveals 

distinct clustering patterns with the majority of observations 

concentrating in low-volatility, low-return quadrants. Notable 

outliers demonstrate exceptional performance characteristics, 

with total returns exceeding 80% while maintaining volatility 

below 0.3, corresponding primarily to DP strategy 

implementations on volatile assets during favorable market 

conditions. This analysis reveals that superior returns can be 

achieved across various volatility levels, suggesting the 

algorithm's profit generation stems from optimal timing rather 

than systematic risk exposure. 

The lower-right panel presents drawdown frequency 

distribution, providing insights into risk management 

effectiveness. Approximately 36 observations experience 

maximum drawdowns in the 0-5% range, indicating 

conservative risk management protocols across most market 

conditions. The distribution demonstrates heavy concentration 

in low-drawdown scenarios, with minimal occurrences of 

extreme drawdown events, validating the DP strategy's capital 

preservation capabilities. 

 
Fig. 23. Strategy Heatmap 

Figure 23 presents a comprehensive performance heatmap 

providing granular insights into strategy effectiveness across 
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individual securities. The visualization employs a color-coded 

intensity scale from dark green (exceptional performance) to 

light yellow (modest returns), enabling immediate 

identification of superior strategy-asset combinations. 

Apple Inc. demonstrates remarkable DP responsiveness, 

with the K=10 strategy generating 551.01% returns compared 

to -9.59% for Buy-and-Hold. The DP K=5 and K=2 strategies 

produce 177.39% and 47.89% returns respectively, while 

baseline strategies generate modest returns of 1.75% and 

9.26%. Amazon exhibits dramatic performance differentials, 

with DP K=10 achieving 905.70% returns versus -96.58% for 

Buy-and-Hold. The K=5 and K=2 strategies generate 228.70% 

and 49.61% returns, while baseline strategies demonstrate poor 

performance with -7.40% and -93.49% returns. 

Google demonstrates consistent DP superiority with K=10 

achieving 499.64% returns versus -91.98% for Buy-and-Hold. 

The K=5 and K=2 strategies produce 178.12% and 49.69% 

returns, while baseline strategies show mixed results of -1.20% 

and 41.35%. Johnson & Johnson exhibits more modest but 

consistent performance differentials, with K=10 generating 

167.55% returns compared to -5.40% for Buy-and-Hold. The 

healthcare sector representation validates DP effectiveness 

across different industry classifications. JPMorgan Chase 

demonstrates robust DP performance with K=10 achieving 

393.35% returns versus 20.31% for Buy-and-Hold, 

highlighting the algorithm's effectiveness within financial 

services sectors.  

Meta Platforms exhibits exceptional DP effectiveness with 

K=10 generating 980.15% returns compared to -25.28% for 

Buy-and-Hold, reflecting superior capability in navigating 

high-volatility technology platform environments. Microsoft 

demonstrates consistent DP superiority with K=10 achieving 

445.28% returns versus 35.23% for Buy-and-Hold, validating 

effectiveness for mature technology enterprises. 

Netflix exhibits remarkable DP performance with K=10 

generating 1358.80% returns compared to 58.21% for Buy-and-

Hold, reflecting exceptional capability in the entertainment 

streaming industry. NVIDIA demonstrates the most 

exceptional performance with K=10 achieving extraordinary 

returns of 4637.18% compared to -46.36% for Buy-and-Hold, 

validating optimization value for companies positioned at 

technological development frontiers. Tesla exhibits the most 

dramatic differentials with DP K=10 achieving exceptional 

returns of 8008.32% compared to 50.95% for Buy-and-Hold, 

demonstrating unparalleled capability to capitalize on extreme 

volatility in electric vehicle sectors. 

The comprehensive analysis demonstrates systematic DP 

superiority across diverse asset classes, market sectors, and 

volatility regimes. The consistent performance differentials 

validate the theoretical foundation of optimization-based 

trading methodologies while highlighting substantial practical 

value for institutional investment environments. 

VIDEO LINK AT YOUTUBE 

https://youtu.be/N2IvKJln3oM 

REPOSITORY LINK AT GITHUB 

https://github.com/danenftyessir/Stock-Trading-Dp-
Optimization.git 
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